首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167639篇
  免费   15607篇
  国内免费   8585篇
电工技术   10389篇
技术理论   12篇
综合类   12935篇
化学工业   26264篇
金属工艺   9920篇
机械仪表   11160篇
建筑科学   13470篇
矿业工程   5269篇
能源动力   4682篇
轻工业   14599篇
水利工程   3599篇
石油天然气   10077篇
武器工业   1528篇
无线电   18559篇
一般工业技术   18142篇
冶金工业   7067篇
原子能技术   1831篇
自动化技术   22328篇
  2024年   380篇
  2023年   2825篇
  2022年   4899篇
  2021年   7256篇
  2020年   5822篇
  2019年   4487篇
  2018年   4929篇
  2017年   5570篇
  2016年   5085篇
  2015年   7352篇
  2014年   9131篇
  2013年   10808篇
  2012年   12075篇
  2011年   12922篇
  2010年   11314篇
  2009年   10567篇
  2008年   10453篇
  2007年   9747篇
  2006年   9534篇
  2005年   7977篇
  2004年   5297篇
  2003年   4725篇
  2002年   4589篇
  2001年   4045篇
  2000年   3370篇
  1999年   3423篇
  1998年   2485篇
  1997年   2054篇
  1996年   2004篇
  1995年   1609篇
  1994年   1310篇
  1993年   859篇
  1992年   764篇
  1991年   517篇
  1990年   402篇
  1989年   342篇
  1988年   247篇
  1987年   160篇
  1986年   132篇
  1985年   75篇
  1984年   53篇
  1983年   48篇
  1982年   55篇
  1981年   35篇
  1980年   42篇
  1979年   26篇
  1978年   2篇
  1977年   2篇
  1959年   9篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
夏敏浩  赵万剑  王骏 《中州煤炭》2022,(7):189-194,200
为了提高配电网差异化节能降耗效果,解决现有潜力评估方法存在的应用性能差的问题,提出碳中和背景下配电网差异化节能降耗潜力优化评估方法。根据配电网的空间结构,构建相应的等值电路模型。在该模型下,从设备损耗和运行附加损耗2个方面计算配电网的损耗量。根据损耗量计算结果,确定配电网差异化碳中和节能降耗方式。从静态和动态2个角度设置潜力评估指标,通过指标数据处理、指标权重求解等步骤,得出配电网差异化节能降耗潜力的综合量化评估结果。将设计潜力评估方法应用到配电网的差异化节能降耗改造工作中,能够有效降低配电网的实际线损量、降低区域损耗费用,并具有较高的应用价值。  相似文献   
3.
4.
5.
文章着重研究子集模拟中马尔可夫链蒙特卡洛(MCMC)抽样算法的抽样效率与计算精度。首先,阐述可靠度子集模拟的基本原理与中间状态样本生成的各种MCMC抽样算法,在稳态马尔可夫链构造基础上提出延迟拒绝MMH(Modified Metropolis Hasting)算法,通过在MMH算法上增加备选样本的延迟拒绝步提高MMH算法的抽样效率;阐述基于随机游走与基于扩散方程MCMC方法中建议分布的差异,进一步对备选样本接受率为1的preconditioned Crank-Nicolson(pCN)算法和条件抽样(Conditional sampling, CS)算法开展研究,证明两种算法的等价性;推导有效样本量的计算方法,提出采用有效样本量与总样本量的比值定义MCMC方法的抽样效率。通过复杂目标分布的样本生成研究不同MCMC抽样算法建议分布及其参数对备选样本接受率与抽样效率的影响,最后通过计算实例研究子集模拟过程采用不同MCMC抽样算法得到失效概率的相对误差及其变异性,揭示不同MCMC抽样算法对失效概率计算精度的影响。研究表明:不同MCMC抽样算法生成备选样本的接受率及其自相关性受建议分布及其参数影响较大,对于复杂的目标分布,pCN算法和CS算法的抽样效率较高,延迟拒绝MMH算法次之;采用CS算法和延迟拒绝MMH算法进行子集模拟得到的失效概率精度较高且变异性较低;增加子集模拟中间状态样本量可以提高失效概率计算精度并降低其变异性。  相似文献   
6.
7.
马晶  李鋆垚  张亚球  蔡宇婷 《红外》2022,43(8):44-52
为进一步提高城市生态监测的精确度,在前人开展的城市生态遥感监测研究的基础上引入“区域尺度”的概念,充分考虑小区域范围内不同地物间的交互作用,并利用移动窗口模型(Moving Window-Remote Sensing Ecology Index, MW-RSEI)对沈阳市浑南区的遥感影像进行逐像元分析。实验结果表明,MW-RSEI模型和生态遥感监测模型(Remote Sensing Ecology Index, RSEI)在整体生态评价趋势上表现出一致性。但MW-RSEI模型对城市生态中的细节区域表征更明显。考虑到建筑及裸地周围植被的影响,其较差生态区域的占比仅为6%,生态评价为优的区域占比为11%。研究区生态评价结果表现得较为连续,并未出现明显的断层现象。该结果具有现实意义且与实际生态分布更为符合。MW-RSEI模型在城市生态监测中更为适用,可为相关部门提供一定的技术参考。  相似文献   
8.
9.
The coupling of reaction and diffusion between neighboring active sites in the catalyst pore leads to the spatiotemporal fluctuation in component concentration, which is very important to catalyst performance and hence its optimal design. Molecular dynamics simulation with hard-sphere and pseudo-particle modeling has previously revealed the non-stochastic concentration fluctuation of the reactant/product near isolated active site due to such coupling, using a simple model reaction of A → B in 2D pores. The topic is further developed in this work by studying the concentration fluctuation due to such coupling between neighboring active sites in 3D pores. Two 3D pore models containing an isolated active site and two adjacent active sites were constructed, respectively. For the isolated site, the concentration fluctuation intensifies for larger pores, but the product yield decreases, and for a given pore size, the product yield reaches a peak at a certain reactant concentration. For two neighboring sites, their distance (d) is found to have little effect on the reaction, but significant to the diffusion. For the same reaction competing at both sites, larger d leads to more efficient diffusion and better overall performance. However, for sequential reactions at the two sites, higher overall performance presents at a smaller d. The results should be helpful to the catalyst design and reaction control in the relevant processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号